Press Room

Press Clipping / Sep 25, 2022

Making drugs more bioavailable

C&EN, 25 September, 2022

Hints of new science emerge in a field of growth for pharmaceutical services firms.

 

Earlier this year, Hovione announced a partnership with a Danish firm that has developed a whey protein–based excipient meant to enhance spray-dry dispersions. Hovione saw in Zerion Pharma’s Dispersome a means of advancing its services addressing bioavailability in drug formulation. Zerion, launched in 2019, saw a clear advantage in teaming with a well-established pharmaceutical services firm recognized as a leader in spray-drying services.

A few months later, Nanoform Finland, a nanoparticle engineering specialist based in Helsinki, announced a partnership with the specialty drug firm Pharmanovia, which will apply Nanoform’s nanoparticle technology and formulation know-how to improve the bioavailability of drugs in its product line.

Zerion and Nanoform are among the growing number of firms trying to deal with problems related to drug bioavailability. Their approaches are welcomed by industry observers, given the increased urgency of such problems and the relative sparsity of technological innovation.

 

Bioavailability, a measure of the portion of an active drug substance that enters the body’s circulation and affects the drug’s target, may not be the steepest challenge faced by developers of new therapeutic compounds. But it may well be the most pervasive. By many estimates, 70–90% of new small-molecule oral drugs have problems related to solubility and absorption.

These problems have been exacerbated in recent years by the increasing complexity of drug molecules, especially in the oncology arena, according to Peter Bigelow, president of xCell Strategic Consulting. The speed with which innovators need to move forward in development has also resulted in a growing market for particle engineering and design, he says.

 

“Because speed is kind of the most important objective of so many of these programs, changing the chemistry is not something they have the luxury to do,” Bigelow says. “A sponsor company will say, ‘I can’t take a year off to come up with a new synthetic route. So you’ve got to make this route to work.’ ”

Bioavailability services first emerged among providers specializing in formulation rather than at contract development and manufacturing organizations (CDMOs), whose primary service centers on the manufacture of active pharmaceutical ingredients (APIs). But the field has shifted over the last decade with the broadening of service offerings among CDMOs and the emergence of a one-stop-shop approach.

 

BEYOND API MANUFACTURE

One of the most popular techniques for improving bioavailability is spray drying, a method for converting poorly soluble APIs into an amorphous dispersion by dissolving the API and a polymer exipient in an organic solvent and evaporating the solvent with heated gases. Hovione was an early adopter, investing in its first spray-drying capacity in 2004, but not with an eye toward improving bioavailability of customers’ drug candidates.

“This is a good example of taking the right decision for the wrong reason,” says Guy Villax, who stepped down as CEO of the family-owned company earlier this year but remains on its board. “I was out in the market looking for business. I came across two inquiries that needed spray drying. We decided if customers were ready to make commitments, we were willing to invest.”

 

"To be successful you need more than the hardware." - Filipe Gaspar, chief technology officer

 

The contracts involved work on Captisol, a solubilizing agent whose manufacture required spray drying as an isolation technique. “There was nothing strategic in terms of addressing poorly soluble molecules,” Villax recalls. But as a result of those early contracts, Hovione was in position to provide solubility services—notably for hepatitis C drugs—as the market grew.

Hovione significantly increased its spray-drying capacity in 2009, when it acquired a Pfizer plant in Cork, Ireland, that included what at the time was the world’s largest solvent-based pharmaceutical spray-drying tower.

Other CDMOs have added services more recently. Fabbrica Italiana Sintetici (FIS) adopted spray drying in 2017, when it opened a new facility at its headquarters plant in Montecchio, Italy. FIS also provides micronization, a process of physically and mechanically breaking up drug crystals, and lyophilization, a freeze-drying means of manipulating particle size. Its sister company, Brenta, is a nanotechnology specialist offering formulation services that address API absorption and bioavailability.

“FIS is a drug substance manufacturer; we are not in drug product,” says Luca Parlanti, the firm’s marketing director, using industry terms for active chemicals and finished drugs. “However, we recognized the increasing relevance of particle-size solid-state technology in general. It is important for a provider like ourselves to offer a forward integration into areas that bridge drug substance and formulation.” Particle engineering is a method of addressing not only bioavailability but also processability, Parlanti says, “because solid-state properties may impact the flow of a drug in the formulation process.”

 

BROAD PORTFOLIOS
Lonza, one of the largest contract API manufacturers, has extended services into particle design via acquisition. The company acquired Capsugel, a formulation services specialist, in 2016, 3 years after Capsugel bought Bend Research, a leader in spray-dry dispersion services. The Capsugel deal also netted Lonza micronization services, but the Swiss firm recently divested assets, notably a plant in Quakertown, Pennsylvania, that was acquired by investors and set up on its own as Microsize.

Lonza announced last month that it would introduce X-ray powder diffraction technology, an analytical tool to improve jet-milling micronization, at its formulation services operation in Monteggio, Switzerland.

The company’s sale of the Pennsylvania plant is the latest transaction for a business dating back to 1994, when it began as Powdersize. It changed hands twice—purchased first in 2013 by Microsize’s current CEO, TJ Higley, and then by Capsugel. Higley left after the Lonza acquisition and returned to head the company this year.

Higley says Microsize maintains its heritage of micronization, which he characterizes as a first line of attack in addressing bioavailability. He says the advantages of micronization include ease of process development and scale-up, an increase in particle surface area, processing at ambient temperatures, and overall low cost compared with its primary alternative, spray drying.

Higley sees Microsize in a strong position. “The market is capacity constrained,” he says. “There is plenty of work out there, plenty of demand.” Some drugmakers have responded by setting up in-house particle design centers, “but there are huge limitations because people aren’t experts at it.” Nor are the in-house facilities typically capable of processing APIs from gram scale up to clinical and commercial scale, he says. “I would say people are bringing early, small-scale micronization in-house,” Higley says. “So, at some point they are going to need to outsource.”

Catalent, another big services firm that has amassed particle design services, has bioavailability assets that date back nearly a century. “Catalent has been in the business of increasing oral bioavailability for oral delivery of active ingredients since the RP Scherer business was formed in 1933,” says Cornell Stamoran, vice president of corporate strategy, referring to a company formed by Robert Pauli Scherer, inventor of the rotary die encapsulation process used to formulate soft gelatin capsules. “I have a lab notebook in my office of one of the first R&D people on their second or third project, which was increasing bioavailability of fish oil.”

Scherer was purchased in 1998 by Cardinal Health, which spun out its pharmaceutical services business as Catalent in 2007. Catalent has since acquired Pharmatek Laboratories, a drug services firm with spray-drying capabilities, and Juniper Pharmaceuticals, an expert in spray drying, nanomilling, and hot-melt extrusion—a method of melting a substance and forcing it through a die to form a new structure; it is widely employed in plastics and has more recently been adapted to pharmaceutical particle design applications.

Thermo Fisher Scientific, a pharmaceutical services firm that took a leadership position in formulation services with the acquisition of Patheon in 2017, has also built a portfolio of bioavailability technologies. It added small-scale spray-drying dispersions with the purchase of Agere Pharmaceuticals in Bend, Oregon, which was formed in 2016 by the former CEO of Bend Research. Thermo Fisher added commercial-scale spray drying at a plant in Florence, South Carolina, shortly after acquiring the site from Roche in 2016.

The Roche site also added micronization to Thermo Fisher’s tool kit. And the company invested in small-scale hot-melt extrusion capacity in Bend before scaling up the technology at its plant in Cincinnati.

Both Catalent and Thermo Fisher have introduced systems to assess the most effective approach to formulation in early-stage drug development, including the selection of techniques to address bioavailability. Catalent has a program, OptiForm, that is based on a predictive modeling regimen it acquired from GSK in 2010. And Thermo Fisher introduced a predictive modeling tool, called Quadrant 2, that guides drug developers in choosing particle design approaches.

 

NEW WAVE

Meanwhile, there are indications that improved approaches are coming to the market. Based on research that began at the University of Copenhagen, Zerion has developed a technology that uses proteins to increase small-molecule drug solubility and that constitutes an alternative to known polymer excipients in spray-dry dispersion applications. “We researched all sorts of different materials, including mesoporous silica, amino acid peptides, and cellulose nanofibers and eventually also proteins,” says Korbinian Löbmann, who is now Zerion’s chief science officer. The firm zeroed in on proteins.

“We tested all the different proteins we could get our hands on, and out of all that research we identified that whey proteins worked particularly well not only for amorphous stabilization but also solubility enhancement,” Löbmann says. The whey protein also allowed significantly higher drug loading—up to 70% of the weight of the particle as opposed to an industry standard of 30% at the high end.

Researchers filed a patent on behalf of the university and formed Zerion. The company has a partnership with Arla Food Ingredients, a specialist in whey protein processing that has developed a means of purifying β-lactoglobulin from whey protein isolate, for which the largest market is infant formula.

Interest in the protein excipient Dispersome has materialized, says Zerion CEO Ole Wiborg, and the firm now has contracts with four major drug companies. And then there is the partnership with Hovione.

“We were approached by Hovione, and this was very positive,” Wiborg says. We could see there was a lot of synergy between what we offer and what Hovione offers. And Hovione is, if not the best, then one of the best at spray-dry amorphous dispersion.”

Moreover, Wiborg says, Hovione opens the door to small and midsize companies, the primary pharmaceutical innovators, which have been more difficult to identify and connect with than the majors.

Hovione also sees benefits for both partners, whereby it gets access to a sophisticated new technology and boosts market access for a start-up, says António Dinis, Hovione’s director of sales and marketing. The deal establishes Hovione as “the sole partner for promoting the technology into the pharma marketplace,” he says.

The arrangement is the first in which Hovione has gained new technology through a partnership, he adds. It may not be the last, given the industry’s problems with bioavailability. “Hovione is actively pursuing opportunities to enhance our technology offering to address these problems,” Dinis says. “Hovione will from now on be much more open to partnering with companies that help us bring more solutions to our customers.”

Nanoform, which spun out of the University of Helsinki in 2015, has innovated a nanocrystalization approach to particle design by employing supercritical carbon dioxide. The company’s controlled expansion of supercritical solution technology produces particles as small ​as 10 nm but more typically within a range of 100–300 nm without the use of solvents, excipients, or polymers.

The technology works by dissolving APIs in supercritical CO2 and controlling the pressure through a flow process to achieve supersaturation, which leads to crystallization or precipitation, according to Christopher Worrall, Nanoform’s vice president of US business development. The reduced size increases particles’ surface area, thereby increasing the dissolution rate and thus bioavailability.

Nanoform signed its first contract last year for a drug produced according to the Finnish Medicines Agency Fimea's good manufacturing practice standards and has a goal of signing three such contracts this year.

 

TWEAKS AND TRANSFORMATION

Despite the paucity of wholly new approaches to particle design, efforts are underway to improve workhorse approaches such as spray drying. Deanna Mudie, a principal scientist at Lonza’s operation in Bend, says Lonza has been experimenting with methods to facilitate amorphous dispersion of so-called brick-dust APIs—poorly soluble drugs with high melting points.

“When drugs have poor solubility in organic spray-dry solvents, you end up with a very low throughput and also high organic solvent usage, which of course is not environmentally friendly,” Mudie says.

One approach is to install a heat exchanger before the spray-drying step to increase a drug’s solubility in an organic solvent. The company is also applying environmentally friendly solvents, such as acetic acid, to processes to reduce the use of standards such as acetone, methanol, and in some cases environmentally impactful solvents such as dichloromethane.

“In general, we have had that focus on improving spray drying over the last 5 years,” Mudie says. “There is a big push because we have seen a trend toward the brick-dust APIs.”

While CDMOs have tended to bring on board tried-and-true methodologies for addressing bioavailability, adding such services can have a transformative impact. At Hovione, research in particle design has grown from a small research group of five chemists in 2005 to a multidisciplinary division with 70 scientists, including chemists, chemical engineers, biologists, and mathematicians.

 

“To be successful you need more than the hardware,” says Filipe Gaspar, Hovione’s chief technology officer and head of its particle design group. “You need the software, the people, the knowledge in R&D, the marketing effort. It is the coordination of a lot of disciplines.”

 

And innovation in particle design, as well as the customer engagements that arise as a result, aims CDMOs toward broader activity in services downstream from API manufacturing. Last month, Hovione announced the start of a new continuous tableting operation at its site in Loures, Portugal. Dinis sees a continuity in the growth of services. “A hundred percent of the powder we process in tableting comes out of spray drying,” he says. “If we weren’t working in spray drying, we would not be involved in tableting.”

 

Read the entire article at CEN.ACS.org

 

 

Also in the Press Room

See All

Pharmaceutical innovators face many challenges when developing new products; as such, getting them to market in a timely, safe and cost-effective way is critical. The use of continuous manufacturing technologies can help to overcome some of the most pressing early-stage obstacles Improving production methods for generic drugs or extending the lifecycle of existing oral solid dosage (OSD) forms is an integral part of the day-to-day operations of many global pharmaceutical companies. At the same time, when formulating new molecular entities, issues such as reducing the cost-per-tablet, increasing patient safety and optimising the price/performance balance of a new drug are common daily concerns. During the early stages of research and development (R&D), however, the availability of the active pharmaceutical ingredient (API) is limited. As such, there is an absolute requirement for process equipment that can produce just a few hundred grams of finished product to fast-track novel formulations.  The changing perspectives of regulatory bodies such as the US FDA and EMA now mean that there’s a better way to improve both supply chain efficiency and product throughput. It’s the 21st century, the pharmaceutical industry is less risk-averse these days, and it’s well-known that continuous manufacturing (CM) solutions can accelerate product development, reduce costs, improve operational economics and make production more agile. CM can accelerate the development of innovative products and increase the quality assurance of existing ones by driving process excellence. It’s a more efficient and flexible technology, offering more consistent and reliable tablet production with the reduced use (and loss) of resources such as precious APIs and raw materials. Additional benefits include less downtime and minimal manual intervention.   Introducing ConsiGma® The ConsiGma® portfolio from GEA Pharma & Healthcare is a multipurpose platform that has been designed to transfer powder into coated tablets in development, pilot, clinical and production volumes in a single compact unit. The system can perform the dosing and mixing of raw materials, wet or dry granulation, drying, tableting and quality control, all in one line. And, as it can produce granules continuously, there is no waste during start-up and shutdown and the batch size is determined simply by how long you run the machine. Quality is measured throughout the process and, as such, drastically reduces the cost-per-tablet. The ConsiGma® concept combines Quality by Design (QbD) principles with Design of Experiments (DoE) to explore and optimise a wide range of process parameters with less product in a shorter time frame.  Dr James (Jim) Holman, Senior Director of Technology Management, Pharma Solids, at GEA, takes up the story: “Our stance with CM is consistent in terms of how we approach both commercial-scale and early development work. We’ve created a range of unit operations or submodules, for example, that are ideal for process or product optimisation studies. For wet granulation, for instance, we have the ConsiGma®-1. You can use the same granulator that you would for a larger-scale machine but simply connect it to a single cell of a six-cell fluid bed system.” He adds: “Our approach to R&D is that we try to scale-out rather than scale-up. Our equipment is specifically designed so that you can process a plug or product key in a very controlled way to limit material usage.”  Jim can cite a litany of Big Pharma organisations that have “developed molecules on our systems in R&D, subsequently transferred them to production and have now had them approved for sale and use.” He acknowledges that, compared with a traditional production-scale system, there are advantages and disadvantages to consider. But he emphasises: “To support our thinking and what we’ve done, there are a lot of commercial products on the market that were made using GEA CM systems.”   The ConsiGma®-1: an integrated R&D solution Developed as a mobile, plug-and-play laboratory-scale version of the GEA’s continuous tableting platform, the ConsiGma®-1 can convert powders into dry granules and is ideal for small-scale research and development applications. It’s specifically designed for maximum flexibility and simplicity in early formulation development work. And, because of its rapid processing times and ability to run batches of a few hundred grams up to 5 kg or more, it’s ideal for developing formula and process parameters using DoE — which can then be scaled-out to the full-size ConsiGma® wet granulation system. “With ConsiGma®, we can help companies all over the world to maximise their R&D efforts and capitalise on the very worthwhile expenditure by getting first-rate products to market quicker,” notes Jim. When equipped with the optional fluid bed dryer segment, drying parameters for batch sizes of 500–1500 g can be determined on the ConsiGma®-1. And, because these granulation details can be directly scaled-out to a production model (such as the ConsiGma®-25), which benefits from the same design, there is no scale-up.  Furthermore, as the retention time of the product in the system is minimal, any change in these parameters is almost immediately visible. This allows for very fast and easy exploration of the design space. The result is a better understanding of both operational capabilities and critical process parameters (CPPs), which ultimately contribute to higher levels of quality assurance and patient safety.  The ConsiGma®-1 is designed for rapid deployment, will fit into the most compact of laboratories and can be transported easily to wherever it’s needed. Installation only requires electricity and standard utilities such as water and compressed air. The system is conceived to be a “plug-and-play” installation. To enhance the R&D flexibility even further, the ConsiGma®-1 can also be configured for hot melt granulation and/or upgraded for contained processing. To cite an example, a ConsiGma®-1 unit was recently used to expedite the development process for a new product during in-house trials. Everything was running smoothly during scale-out to a commercial-size line, until one of the raw material sources had to be changed. Anticipating granulation issues due to the changed specifications of the raw material, and with a pending deadline — and not wishing to revert to the ConsiGma®-1 for redevelopment (or to clean another piece of equipment) — it was decided to tackle the issue using the production-scale CM line. Owing to the inherent flexibility of continuous processing and the transferable compatibility of the critical parameters, the correct settings were found in just a few hours using only a limited amount of product. Full production mode could be quickly reinstated with minimal disruption. The ConsiGma® DC for continuous direct compression is the most recent expansion of GEA's portfolio of cost-effective, compact and high-yield manufacturing systems. By integrating four key technologies — accurate loss-in-weight feeding, continuous blending, tablet compression technology and the online measurement of CQAs (Critical Quality Attributes), it offers a robust and flexible production method for a wide range of products in a small footprint. Of note here is that standalone plant is often used to separately test and optimise the critical unit operations before the entire line is constructed, thereby accelerating the process. This means that each manufacturing step can be enhanced without first having to run or invest in a complete process chain. One company that has benefited from this approach is Hovione, a specialist contract development and manufacturing organisation. Using a combination of standalone laboratory scale units coupled with process analytical technology (PAT) tools, computational models and powder characterisation equipment, Hovione is developing processes at the R&D scale with minimal material consumption and resources. The standalone dosing and blending unit is equipped with feeders and blenders that are identical to those used in GEA’s GMP Continuous Direct Compression (CDC) lines. Powder characterisation and the use of compaction simulations “close the circle” in terms of connecting the unit operations and allow operators to fully define the process parameters that are used in a digital twin version of the line. João Henriques, R&D Director – Oral Drug Product Development comments: “This integrated platform accelerates process development, helps to optimise formulation and product parameters and improves operational performance. It also enables the seamless scale-out of continuous tableting processes to a GMP line with reduced risk and low API consumption. This methodology has been used to successfully develop and scale-out multiple processes to CDC lines.”   Coating covered Not only does GEA have what Jim calls “grouped unit operations” for applications such as wet granulation —wherein a twin-screw granulator is combined with a single cell fluid bed — standalone systems such as dosing and blending rigs, an independent feeder and/or continuous coaters are also available. In addition, plant for direct compression can also be supplied. The ConsiGma® DC-LB Lines integrate continuous dry blending using linear blenders and tablet compression into one efficient continuous production system. Being able to accommodate differently sized blenders makes it a fully configurable setup. From an operational perspective, adds Jim, the advantage of the GEA Coater during R&D is that you don’t have to run a full-scale trial with all the associated losses of startup, shutdown, etc. All you need is a 1.5 kg plug and then, to scale-out your production, you just repeat the process. It's the same with wet granulation. Doing so gives you the certainty that you can basically repeat the same operation — or just run it for longer — to achieve commercial levels of production. Jim suggests that a well-known top-tier pharmaceutical company has recently invested in two ConsiGma®-1 units and coaters and is in the process of replacing their existing batch coating equipment with GEA machinery. “It’s now their default choice of coating technology for R&D,” he says. “With the three sizes of coating pans we offer, you have the option of using 1.5, 3.0 or 6.0 kg samples simply scaling that out.”   In conclusion Shining the spotlight on wet granulation as an example application, many of the most well-known names in the pharmaceutical sector have products on the market that were initially tested on a ConsiGma®-1 unit, subsequently transferred to a larger development and launch rig (DLR) and were then put into commercial production. Reaping the benefits of grouped unit operations during R&D enables GEA customers to expedite product development, eliminate scale-up and rapidly transfer the manufacturing process to an integrated line. Plus, by producing tablets continuously, “batch sizes” are simply determined by how long you run the machine.  It’s also helping the pharmaceutical industry to produce higher quality products, enhance drug safety, reduce its industrial footprint and decrease waste, which provides significant advantages to governments, companies and patients alike. Continuous processing is the future of pharmaceutical manufacturing. As Jim will attest, the majority of the top ten pharmaceutical companies have now confirmed that their strategy is to develop both new chemical entities (NCEs) and, when economically and technically viable, also manufacture legacy ethical and generic products using continuous technologies.   Read the full article on ManufacturingChemist.com  

Article

Optimising early-stage drug development with continuous processing

Apr 30, 2025