Press Room

DDL 2021

Wednesday, December 08, 2021 - 00:00
Friday, December 10, 2021 - 00:00
Location: Online


Schedule a meeting today
and connect with one of our Inhalation Experts


Hovione's Scientists On-Demand Presentations:


Hovione scientist at DDL Conference Nasal PAMPA intranasal drug permeability | Hovione


Nasal-PAMPA: a novel in vitro tool for prediction of intranasal drug permeability

Presenter: Patrícia Henriques, PhD Student, R&D DPD 


In nasal drug product development, biorelevant in vitro methodologies are vital in order to select promising compounds or formulations, potentially reducing pre-clinical and clinical trials. Permeability assays are often applied to predict drug absorption and bioavailability. For nasal delivery products, permeation models include ex vivo models using excised nasal mucosa and in vitro cell culture models. However, ex vivo models present high variability and cell culture models are very time consuming. The Parallel Artificial Membrane Permeability Assay (PAMPA) has emerged as a high throughput screening tool to evaluate drug permeability, and it has been applied to several barriers such as the intestine, skin or blood-brain-barrier. Herein, a new PAMPA model was developed and optimized to predict nasal permeability, using a biorelevant donor medium containing mucin. The apparent permeability (Papp) of 15 reference compounds was assessed in six different experimental conditions. The model with 0.5% (w/v) mucin in the donor compartment and 2% (w/v) phosphatidylcholine in the lipid membrane correctly distinguished high and low permeable compounds, with no false positives or negatives. In addition, it exhibited the highest correlation with permeation across human nasal epithelial RPMI 2650 cells (R2 = 0.71). Overall, the optimized PAMPA model was reproducible, predictive and inexpensive, showing to be a promising non-cell based and biorelevant in vitro tool that could be applied in an early screening stages of new nasal drug delivery products.

Hovione scientist at DDL Conference DPI formulation screening: particle-particle interaction | Hovione
Hovione scientist Joao Pereira at DDL Conference DPI formulation screening: particle-particle interaction | Hovione


Leveraging DPI formulation screening: particle-particle interaction

Raquel Borda D’Água, Associate Analytical Scientist, R&D Analytical Development
João Pereira, Manager R&D Analytical Development


Dry powder inhalers (DPIs) have attracted enormous attention worldwide due to its local targeting, rapid drug effect and reduced systemic toxicity. However, DPI formulations consist of highly cohesive powders that tend to agglomerate. Therefore, understanding the role of cohesive-adhesive forces in different formulations and establishing a predictive approach for aerodynamic particle size distribution (aPSD) is thus, highly beneficial. The purpose of this study is to explore the relationship between powder dispersibility with the aerodynamic performance of different DPI formulations. Sympatec was used to characterise powder dispersibility and inherent cohesion and adhesion forces at different pressures. Powder dispersibility obtained by Sympatec and aerodynamic properties from the NGI analysis were evaluated in order to deeper understand the characteristic behaviour of these formulations




Take advantage of cutting-edge particle engineering technologies highly skilled responsive staff and state of the art analytical facilities.


Everything for Inhalation

Inhalation high performance APIs particle engineering formulation DPIs pdf | Hovione



Learn more about DDL2021




Also in the Press Room

See All

Continuous Tableting (CT) is defined as continuous manufacturing of oral dose drugs, specifically tablets. As per ICH's Q13 definition1, a continuous manufacturing process in the pharmaceutical industry comprises at least two unit operations integrated from a mechanical and software perspective. There is a wide combination of possible CT process configurations that are dependent on the needs of the intended product formulation and each of the individual unit operations that constitute the process train can be continuous, semi-continuous, or batch processes. The typical manufacturing processes for tablet formulation are direct compression (DC), dry granulation (DG) and wet granulation (WG)2 - details on these manufacturing processes are beyond the scope of this article, so the interested reader is directed to relevant literature. The actual implementation of CT technology in a facility can broadly vary depending on the level of desired integration and automation. Process trains can be designed to be flexible and converted between multiple configurations (e.g. continuous DC, DG and WG), controlled by the end user from one single software and within a single clean room. The other possibility would be for subsections of the CT process to be divided into multiple clean rooms where inprocess materials are transferred between suites via a bin-to-bin approach (e.g. a granulation suite to prepare granules from raw materials followed by continuous DC (CDC) to blend the granules and produce tablets). The level of automation and instrumentation designed into the CT process (typically involving Process Analytical Technologies, PAT) can open the possibility to implement sophisticated control strategies. Key components of a control strategy that need to be considered for CT are material tracking and genealogy, knowledge of the residence time distribution (RTD), and in-process controls (spectroscopic and/or soft sensors based on process parameters). Holistically, these control strategy elements enable the implementation of a material diversion strategy to automatically divert out of specification material from the process. In their most advanced form, control strategies may also enable real time release testing (RTRt) of the final tablet drug product and reduce the off-line analytical burden and the number of operators needed to manage the process.   Read the full article at  


Continuous Tableting and the Road to Global Adoption

Mar 04, 2024