Press Room

Article / Jun 01, 2020

Outsourcing Formulation Development & Manufacturing: Specialized Capabilities for Small & Large Molecules

Drug Development & Delivery, June 2020

Special Feature, from page 63 to 71

 

Hovione: Particle Engineering for Small & Large Molecules

Hovione has strategically decided to explore niche areas that are difficult to tackle and can benefit from its expertise in particle engineering. Examples include the oral delivery of Amorphous Spray Dried Dispersions and the manufacturing of dry powders for inhalation. Historically, Hovione has mainly focused on small molecules and their pre-formulation, by means of particle engineering, to overcome solubility limitations or to render them suitable for inhalation. In recent years, Hovione has experienced some challenges with large-molecule particle engineering, but intends to increase its activity in this area. “The delivery of large molecules is leading us to novel areas of aseptic particle engineering that we will be introducing in our portfolio,” says Teresa Alves, PhD, Senior Director, Science & Technology, Hovione. Dr. Alves adds that there are opportunities to apply lessons learned with small molecules to large molecules. “We see a trend in the increased delivery of biologics by inhalation, particularly dry powder inhalation, including the delivery of peptides, proteins, hormones, DNA, RNA, etc. We are also actively working to process low bioburden biologics to solve difficulties that our clients experience in limited shelf life, high viscosity, and new areas of administration.”

Márcio Temtem, PhD, Site Manager, R&D services, Hovione, explains how the company’s sponsors have benefitted from Hovione’s experience in spray drying. “Spray drying scale up runs with minimum work at scale,” he says. “This is what we call Development by Design. By relying on stasticial and mechanistic models, databases, and scientific know-how, we can save API and time required for CMC process development. We have successfully applied these tools to biologic molecules, namley proteins, antibodies, and fragments of antibodies, and some of these solutions have evolved to commercial manufacturing.”

 

 

Read the DD&D issue

 

Also in the Press Room

See All

Continuous Tableting (CT) is defined as continuous manufacturing of oral dose drugs, specifically tablets. As per ICH's Q13 definition1, a continuous manufacturing process in the pharmaceutical industry comprises at least two unit operations integrated from a mechanical and software perspective. There is a wide combination of possible CT process configurations that are dependent on the needs of the intended product formulation and each of the individual unit operations that constitute the process train can be continuous, semi-continuous, or batch processes. The typical manufacturing processes for tablet formulation are direct compression (DC), dry granulation (DG) and wet granulation (WG)2 - details on these manufacturing processes are beyond the scope of this article, so the interested reader is directed to relevant literature. The actual implementation of CT technology in a facility can broadly vary depending on the level of desired integration and automation. Process trains can be designed to be flexible and converted between multiple configurations (e.g. continuous DC, DG and WG), controlled by the end user from one single software and within a single clean room. The other possibility would be for subsections of the CT process to be divided into multiple clean rooms where inprocess materials are transferred between suites via a bin-to-bin approach (e.g. a granulation suite to prepare granules from raw materials followed by continuous DC (CDC) to blend the granules and produce tablets). The level of automation and instrumentation designed into the CT process (typically involving Process Analytical Technologies, PAT) can open the possibility to implement sophisticated control strategies. Key components of a control strategy that need to be considered for CT are material tracking and genealogy, knowledge of the residence time distribution (RTD), and in-process controls (spectroscopic and/or soft sensors based on process parameters). Holistically, these control strategy elements enable the implementation of a material diversion strategy to automatically divert out of specification material from the process. In their most advanced form, control strategies may also enable real time release testing (RTRt) of the final tablet drug product and reduce the off-line analytical burden and the number of operators needed to manage the process.   Read the full article at gmp-journal.com  

Article

Continuous Tableting and the Road to Global Adoption

Mar 04, 2024