

Dissolution of Orally Inhaled Drugs using DissolvIt®: Influence of a Newly Designed Pre-Separator for Particle Collection

Beatriz Noriega^{1,2}, Maria Malmlöf^{3,4}, Eunice Costa¹, M. Luisa Corvo², Per Gerde^{3,4}, Filipa M. Maia¹

¹Hovione FarmaCiencia SA, Sete Casas, Loures, 2674-506, Portugal ²iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, Lisboa, 1649-003, Portuga¹ ³Inhalation Sciences, Hälsovägen 7-9, 141 57, Huddinge, Sweden

⁴Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden

Introduction

• Inhalation dosage forms present unique problems when developing a dissolution test due to their physicochemical properties and the physiological environment in which they should release their content.

Dissolv*It*[®] was developed as a dissolution model which simulates the physiological conditions in the lung and mimics the pharmacokinetic data of inhaled particles^[1]. It is used in combination with the PreciseInhale[®] exposure platform^[2] to collect the aerosolized powder on glass coverslips by simulating human breath with an automated system.

• Moreover, only the **respirable fraction** of the dry powder (1-5 µm) should be considered in a dissolution test.

PreciseInhale® is equipped with an induction port (IP) simulating the patient's throat, however it does not completely separates the non-respirable fraction, leading to coarse

particle collection, and thus presence in the dissolution experiment.

In this work a newly designed pre-separator (PS) was employed during particle collection as an extra impaction stage for coarse particles, aiming to investigate the influence of the collected powder on the Dissolvlt[®] dissolution/absorption profiles.

Materials and Methods

Powder characterization and collection on coverslips

1. PreciseInhale[®] (Figure 1) was employed to aerosolize and collect the commercial powders on coverslips, to be tested in the Dissolv*It*[®] apparatus (Figure 2).

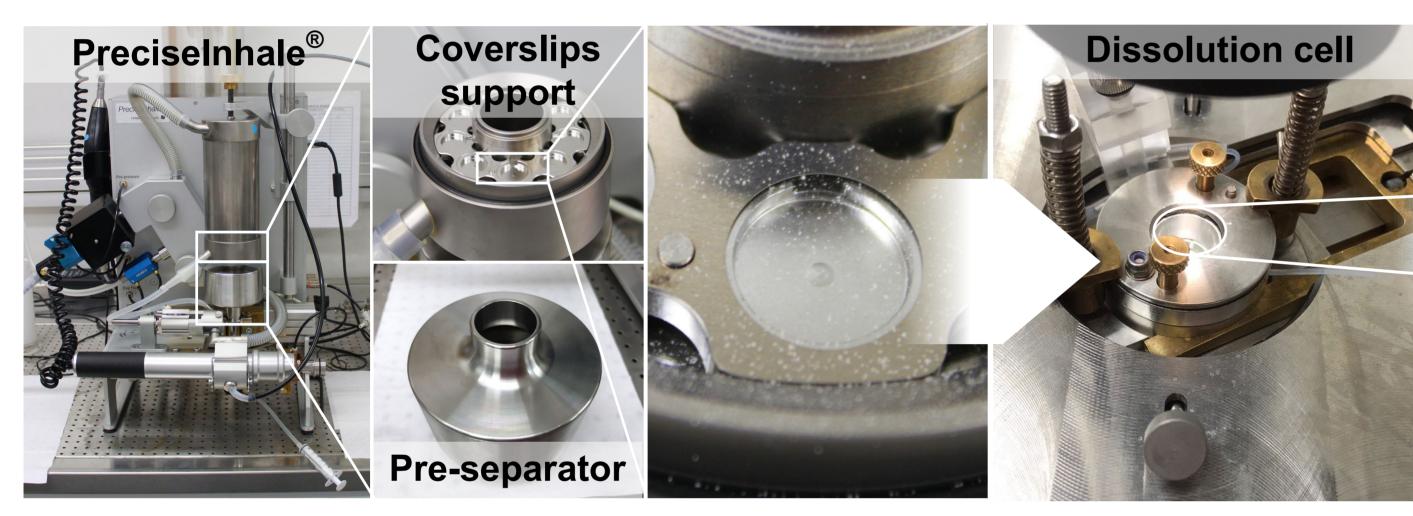
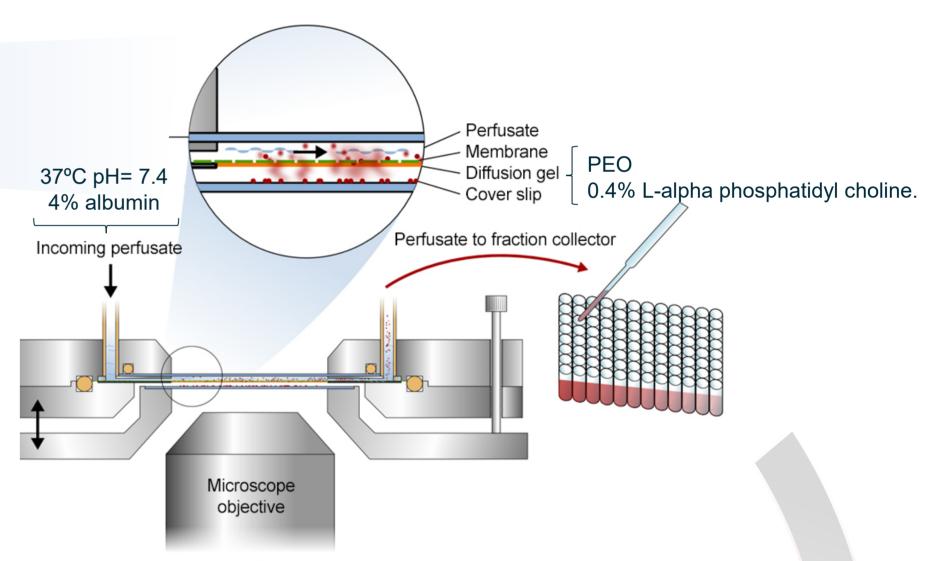


Figure 1 – Experimental set-up.

2. The number of actuations per API and set-up was selected to achieve similar deposited

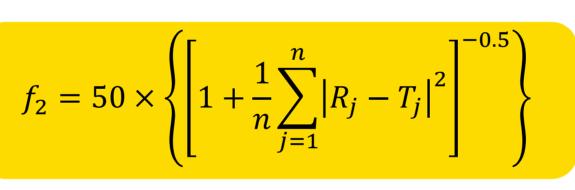
Aerosol characterization


The aerodynamic particle size of the powder was determined by Marple cascade impactor, coupled to the coating chamber during exposure at an airflow of 2 L/min.

The powder deposited in the coverslips was also analysed by SEM.

Dissolution profile determination with DissolvIt®

Dissolution takes place in the **dissolution chamber**, from the coverslip glass to the pumped perfusate through a 50 µm-thick layer of mucus simulant and a polycarbonate membrane (0.03 µm pores).



doses.

Table 1 – Amount of API deposited on the collecting glasses with the PreciseInhale[®].

Set up	Inhaler	API	Deposited dose (ng/glass)	Number of actuations
Without PS	Flixotide Diskus	Fluticasone	651±293	1
With PS		Propionate (FP)	618±144	5
Without PS	Pulmicort	Budesonide (BD)	587±51	7
With PS	Flexhaler		739±62	3

Eq.1: similarity factor

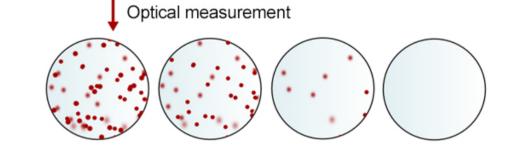


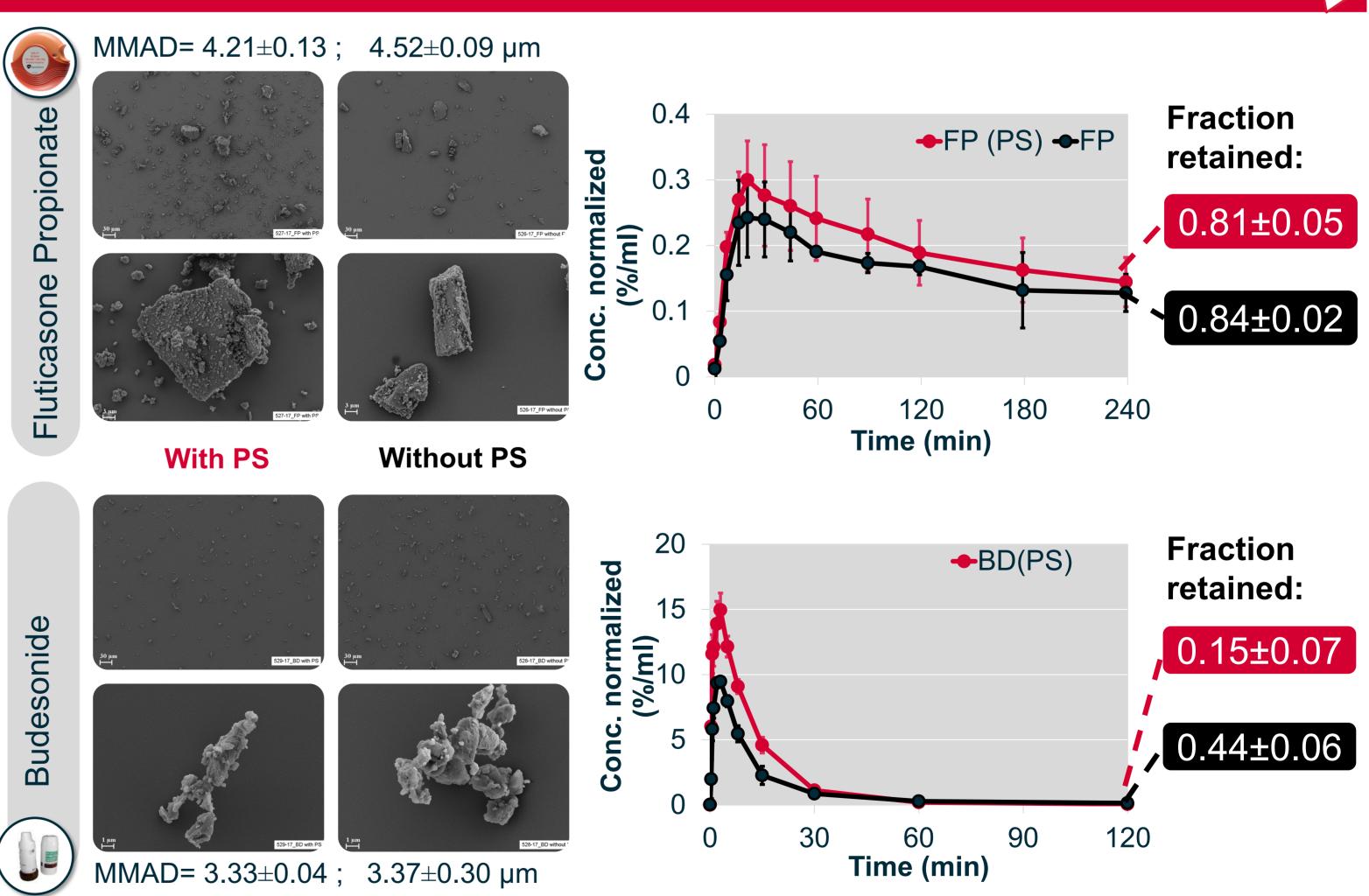
Figure 2 – DissolvIt® schematized, reprinted from [1];

Results and Discussion

Powder characterization and collection on coverslips

There is a significant decrease (p<0.05) in MMAD of the poder collected with using the PS for the FP powder (Figure 3, top).

BD powder collected with PS has a similar particle size **however** SEM results show less powder agglomerates.


Dissolution profile determination

There is a **difference in the extent of dissolution between the APIs:** BD release increases to 85% in 2 hours, while FP does not reach 20% in 4 hours.

A **similar behaviour can be observed in clinical trials** of the studied drugs^[1].

PS effect

FP collected with and without PS shows a **similar profile**, BD profiles show

a difference (f_2 =0.38<0.50). Without PS:

 \rightarrow **Slower dissolution**, which may be explained by the presence of larger agglomerates of particles on the glass coverslips visible to the naked eye, and therefore a reduced dissolution area (according to Fick's law)

 \rightarrow Half maximum concentration of the dissolution profile

 \rightarrow Longer half-life time, however, the time of maximum concentration was not influenced.

Figure 3 – Left: SEM images from collected particles according to Table 1; Right: dissolution profile in the DissolvIt® apparatus, powder collection with (red) and without (black) the PS. n=3

Conclusion

- The PS proved to have an influence on the powder aerodynamic profile and the API load collected on the coverslips.
- The dissolution results were not significantly different for Flixotide (FP), but for Pulmicort (BD) the **powder collected using the PS showed a higher dissolution rate**, possibly due to the deposition of smaller agglomerates, pointing to the importance of particle deagglomeration on API dissolution behaviour.
- Future work includes testing the inhalers with higher flow-rates and a new pre-separator appropriately designed for said flow-rates, to increase powder de-agglomeration and to better mimic the deposition of a fine particle fraction of an API in the real lung.

REFERENCES: [1] Gerde P, Malmlöf M, Havsborn L, Sjöberg CO, Ewing P, Eirefelt S, Ekelund K. Dissolv It: An In Vitro Method for Simulating the Dissolution and Absorption of Inhaled Dry Powder Drugs in the Lungs. ASSAY and Drug Development Technologies. 2017 Mar 1;15(2):77-88. [2] Gerde P, Ewing P, Låstborn L, Ryrfeldt Å, Waher J, Lidén G. A novel method to aerosolize powder for short inhalation exposures at high concentrations: isolated rat lungs exposed to respirable diesel soot. Inhalation toxicology. 2004 Jan 1;16(1):45-52.