Press Room

Article / May 01, 2013

Applying Quality by Design to spray drying

Chemistry Today, March/April 2013

The role of empirical and mechanistic modeling

The purpose of this work was to build different models to predict the particle size of spray dried powders and assess their usefulness in the design space establishment. Powders were obtained by spray drying solutions of a known pharmaceutical excipient (hypromellose phthalate). The powders were characterized by image analysis (for particle size and circularity), loss on drying (for residual solvent content) and helium pycnometry (for particles density). A full factorial experimental design was performed and PLS regression was used to establish a statistical model. In addition, mechanistic modeling of droplet formation based on hydrodynamic instabilities was also used to estimate the size of particles. Spherical particles, with average particle size between 3 and 9 ?m, were obtained by spray drying solutions in a lab scale unit. Particle density and residual solvent content did not vary significantly between experiments. Statistical and mechanistic approaches were compared. Both statistical and mechanistic models were able to describe the results observed, although the mechanistic model was the most accurate. The mechanistic description of droplet formation was of great assistance to understand and describe the spray drying process.

 

Introduction

Spray drying is a well-established and widely applied technology to manufacture a wide range of powders. It is an ideal process when the end-product quality comprises attributes such as well-defined particle size distribution, residual solvent content, bulk density and morphology (1). Spray drying involves the atomization of a liquid stream (i.e. dispersion of the liquid into very small droplets) into a chamber where the droplets are contacted with a hot gas stream leading to flash drying and particle formation (2). Efforts to understand the physical principles of spray drying were intensified in the last decade with the aim of improving powders attributes and speed up product and process development. Due to the remarkable flexibility of the technology the use of spray drying is increasing in the pharmaceutical industry. It is being used to produce, among others, amorphous materials with enhanced bioavailability, microencapsulated drugs and powders for inhalation (3). In most of the spray drying applications the particle size is considered a critical quality attribute, e.g. for inhaled or oral drugs where it affects drug aerodynamic or compr ...

 

Read entire article

Also in the Press Room

See All

Continuous Tableting (CT) is defined as continuous manufacturing of oral dose drugs, specifically tablets. As per ICH's Q13 definition1, a continuous manufacturing process in the pharmaceutical industry comprises at least two unit operations integrated from a mechanical and software perspective. There is a wide combination of possible CT process configurations that are dependent on the needs of the intended product formulation and each of the individual unit operations that constitute the process train can be continuous, semi-continuous, or batch processes. The typical manufacturing processes for tablet formulation are direct compression (DC), dry granulation (DG) and wet granulation (WG)2 - details on these manufacturing processes are beyond the scope of this article, so the interested reader is directed to relevant literature. The actual implementation of CT technology in a facility can broadly vary depending on the level of desired integration and automation. Process trains can be designed to be flexible and converted between multiple configurations (e.g. continuous DC, DG and WG), controlled by the end user from one single software and within a single clean room. The other possibility would be for subsections of the CT process to be divided into multiple clean rooms where inprocess materials are transferred between suites via a bin-to-bin approach (e.g. a granulation suite to prepare granules from raw materials followed by continuous DC (CDC) to blend the granules and produce tablets). The level of automation and instrumentation designed into the CT process (typically involving Process Analytical Technologies, PAT) can open the possibility to implement sophisticated control strategies. Key components of a control strategy that need to be considered for CT are material tracking and genealogy, knowledge of the residence time distribution (RTD), and in-process controls (spectroscopic and/or soft sensors based on process parameters). Holistically, these control strategy elements enable the implementation of a material diversion strategy to automatically divert out of specification material from the process. In their most advanced form, control strategies may also enable real time release testing (RTRt) of the final tablet drug product and reduce the off-line analytical burden and the number of operators needed to manage the process.   Read the full article at gmp-journal.com  

Article

Continuous Tableting and the Road to Global Adoption

Mar 04, 2024